

Spac	ce and Time Scales of Turbulence
E	nergy Cascade
•	Energy is cascaded from large scales to small scales through through stretching and folding by convection.
•	Evolution of large eddies controls the rate at which energy is fed through to be dissipated.
•**	Turbulence decides its own smallest scales according to the viscosity and the energy cascade rate.
•	When steady, the small eddies dissipate energy at a rate equal to the cascade rate.
•**	The instabilities of the mean flow replenish the large scales of turbulence.

5 Space and Time Scales of Turbulence
Eddy lifetime v.s. Eulerian time scale
velocity difference across a distance $\ell = \Delta u_{\ell} = \langle u'(x+\ell) - u'(x) \rangle$
eddy lifetime of size $\ell = \ell / \Delta u_{\ell}$
Eulerian time scale is dominated by the sweeping of mean flow/large eddies past a fixed point
$=\ell/q$ (if the frame moves with the mean flow)
$\frac{\text{lifetime}}{\text{Eulerian time}} \sim \frac{q}{\Delta u_{\ell}} >> 1 \text{ for small enough } \ell$

~ one-point-one-time s ~ essential and importa	tatistics ant but n	ot complete	
§ Reynolds (1894) Average	ed Velocit	y	
$u_i = \overline{u}_i + \iota$	$\iota_i' = \text{mean}$	ı + turbulent ve	elocity
mean kinetic energy per unit	mass = $\frac{1}{2}$	$\frac{1}{2}\overline{u_i u_i} = \frac{1}{2}\overline{u_i}\overline{u_i}$	$+\frac{1}{2}\overline{u_i'u_i'} \equiv \overline{K} + K$
	= en	ergy of mean	motion + turbulent energy
(a) Continuity: $\nabla \cdot \vec{u} = \frac{\partial u_j}{\partial x_j}$	$=\frac{\partial(\overline{u}_{j}+u'_{j})}{\partial x_{j}}$	<u>)</u> _=0 (1) □	$\Rightarrow \frac{\overline{\partial u_j}}{\partial x_j} = \frac{\partial \overline{u}_j}{\partial x_j} = 0 (1a)$
		(1)-(1a) 🗆	$\frac{\partial u'_j}{\partial x_j} = 0 (1b)$

6. Mean Motion
Turbulent momentum equations: total momentum - mean momentum
$\frac{Du'_i}{Dt} \equiv \frac{\partial u'_i}{\partial t} + \overline{u}_j \frac{\partial u'_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p'}{\partial x_i} + \frac{1}{\rho} \frac{\partial \tau'_{ji}}{\partial x_j} $ (2b)
$\tau'_{ij} = \mu \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right) + \rho \left(\overline{u'_i u'_j} - \overline{u}_i u'_j - u'_i u'_j \right)$
(c) Energy of mean motion = $\overline{K} \equiv \overline{u}_i \overline{u}_i / 2$
$\overline{u}_i \cdot \left\{ \rho \frac{D\overline{u}_i}{Dt} = \rho g_i - \frac{\partial \overline{\rho}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\overline{\tau}_{ji} - \rho \overline{u'_i u'_j} \right) \right\}$
$\rho \frac{D\overline{K}}{Dt} = \rho \overline{u}_i g_i - \overline{u}_i \frac{\partial \overline{p}}{\partial x_i} + \overline{u}_i \frac{\partial}{\partial x_j} \mu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) - \overline{u}_i \frac{\partial \rho \overline{u'_i u'_j}}{\partial x_j}$

1	$\tau_{ij}^t = -\rho \overline{u'_i u'_j}$ = Reynolds (turbulent) stress tensor
	 the average momentum flux due to turbulent velocity fluctuations
	- the interaction (coupling) of turbulence with the mean flow
	~ arising from the nonlinear (convection) term of Navier-Stokes equations
	~ cause the closure problem
	~ much larger than viscous stress except near very walls where $\frac{\partial \overline{u}_i}{\partial x_j}$ is not small for generally large-Reynolds-number turbulent flows
	(As $\mu \rightarrow 0$, $\overline{\tau}_{ij} = \mu \left(\frac{\partial \overline{u}_i}{\partial x_i} + \frac{\partial \overline{u}_j}{\partial x_i} \right) \rightarrow 0$ because \overline{u}_i does not fluctuate.)
	~ homogeneous turbulence has no effect on the mean flow, $\frac{\partial \rho u'_i u'_j}{\partial x_i} = 0$

N	Aean Motion
	energy dissipation rate per unit mass
÷	mean flow dissipation rate: $\Sigma = 2\nu \overline{S}_{ij} \overline{S}_{ij}$, $\overline{S}_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$
	mean turbulent dissipation rate: $\overline{\varepsilon} = 2v\overline{S'_{ij}S'_{ij}}$, $S'_{ij} = \frac{1}{2}\left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i}\right)$
	total dissipation rate: $\overline{\Delta} = \Sigma + \overline{\varepsilon} = 2\nu \left(\overline{S}_{ij} \overline{S}_{ij} + \overline{S}'_{ij} S'_{ij} \right)$
	~ intermittent ϵ and Δ (local/one ensemble turbulent and total dissipation rate)
	~ At high Reynolds numbers, usually $\overline{\epsilon} >> \Sigma$ (dissipation dominated by small scales)
	(The characteristic scales for a not-small variation of mean quantity is usually comparable or larger than the largest scales of turbulence, except near the walls.)

6. Mean	Motion
Reyr	nolds stress tensor equations
$\frac{D\overline{u_i'u_j'}}{Dt}$	$= \frac{\partial \overline{u'_i u'_j}}{\partial t} + \overline{u}_m \frac{\partial \overline{u'_i u'_j}}{\partial x_m} \sim \text{mean motion Lagrangian}$
	$= -\frac{1}{\rho} \overline{\left(u'_j \frac{\partial p'}{\partial x_i} + u'_i \frac{\partial p'}{\partial x_j} \right)} \sim \text{pressure effects (nonlocal, linear, and nonlinear)}$
ure problen	$+ v \left(\frac{\partial^2 \overline{u'_i u'_j}}{\partial x_m \partial x_m} - 2 \frac{\partial u'_i}{\partial x_m} \frac{\partial u'_j}{\partial x_m} \right) \sim \text{viscous diffusion/dissipation effect} $ nonlocal
closi	$-\left(\overline{u_i'u_m'}\frac{\partial \overline{u}_j}{\partial x_m} + \overline{u_j'u_m'}\frac{\partial \overline{u}_i}{\partial x_m}\right) \sim \text{production and reorientation by the} $ mean motion
	$-\frac{\partial \overline{u'_i u'_j u'_m}}{\partial x_m} \sim \text{turbulent advection}$

Rey	nolds s	tress ten	sor equ	ations			
¢		$u'_j \left\{ \frac{Du'_i}{Dt} = \right.$	$=\frac{\partial u_i'}{\partial t}+\overline{u}$	$\overline{a}_m \frac{\partial u'_i}{\partial x_m} =$	$-rac{1}{ ho}rac{\partial p'}{\partial x_i}+$	$\frac{1}{\rho} \frac{\partial \tau'_{mi}}{\partial x_m} \bigg\}$	
	+)	$u_i' \left\{ \frac{Du_j'}{Dt} = \right.$	$=\frac{\partial u'_j}{\partial t}+\bar{\iota}$	$\overline{u}_m \frac{\partial u'_j}{\partial x_m} =$	$-\frac{1}{\rho}\frac{\partial p'}{\partial x_j}$	$+\frac{1}{\rho}\frac{\partial \tau'_{mj}}{\partial x_m}\bigg\}$	
$\frac{Du_i'u_j'}{Dt}$	$=\frac{\partial u_i' u_j'}{\partial t}$	$+\overline{u}_m \frac{\partial (u'_i u)}{\partial x_m}$	$\left(\frac{j}{p}\right) = -\frac{1}{\rho}$	$\left(u'_j \frac{\partial p'}{\partial x_i}\right)$	$+ u_i' \frac{\partial p'}{\partial x_j} \bigg)$	$+\frac{1}{\rho}\left(u_{j}^{\prime}\frac{\partial\tau_{mi}^{\prime}}{\partial x_{m}}\right)$	$+u_i'\frac{\partial \tau'_{mj}}{\partial x_m}$
	$u'_{j} \frac{\partial \tau'_{m}}{\partial x_{m}}$	$\frac{1}{u'_j} = u'_j \frac{\partial}{\partial x_m}$	$-\left\{\mu\left(\frac{\partial u_i'}{\partial x_m}\right)\right\}$	$\frac{1}{n} + \frac{\partial u'_n}{\partial x_i}$	$+\rho(u'_{i}u'_{m})$	$-\overline{u}_i u_m' - u_i' u_i'$	$\left(\frac{1}{m}\right)$
			$a^2 u'$	au			

. Examples	steady, infinite mean flow with uniform shear $\overline{u_1} = sx_2, \overline{u_2} = \overline{u_3} = 0$
🔶 🏷 Reyr	olds stresses
$\overline{u_1'u_2'}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
$\frac{D\overline{u_1'u}}{Dt}$	$\frac{\overline{v_2}}{\overline{v_2}} = -\frac{1}{\rho} p' \left(\frac{\partial u_1'}{\partial x_2} + \frac{\partial u_2'}{\partial x_1} \right) - 2\nu \overline{\frac{\partial u_1'}{\partial x_m} \frac{\partial u_2'}{\partial x_m} - s \overline{u_2'^2}}$
🗞 turbu	lent pressure
∇	${}^{2}\left\{p^{\prime(L)}+p^{\prime(NL)}\right\}=-\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\left\{\rho u_{i}^{\prime}\overline{u}_{j}+\rho\overline{u}_{i}u_{j}^{\prime}+\rho u_{i}^{\prime}u_{j}^{\prime}-\rho\overline{u_{i}^{\prime}u_{j}^{\prime}}\right\}$
V	${}^{2}\left\{p^{\prime(L)} + p^{\prime(NL)}\right\} = -2\rho s \frac{\partial u_{2}^{\prime}}{\partial x_{1}} - \rho \frac{\partial u_{i}^{\prime}}{\partial x_{j}} \frac{\partial u_{j}^{\prime}}{\partial x_{i}}$
р	$\Pi z = (L),$